Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Article En | MEDLINE | ID: mdl-38466565

BACKGROUND: Frontal electroencephalography (EEG) monitoring can be useful in guiding the titration of anesthetics, but it is not always feasible to place electrodes in the standard configuration in some circumstances, including during neurosurgery. This study compares 5 alternate configurations of the Masimo Sedline Sensor. METHODS: Ten stably sedated patients in the intensive care unit were recruited. Frontal EEG was monitored in the standard configuration (bifrontal upright) and 5 alternate configurations: bifrontal inverse, infraorbital, lateral upright, lateral inverse, and semilateral. Average power spectral densities (PSDs) with 95% CIs in the alternate configurations were compared to PSDs in the standard configuration. Two-one-sided-testing with Wilcoxon signed-rank tests assessed equivalence in the spectral edge frequency (SEF-95), EEG power, and relative delta (0.5 to 3.5 Hz), alpha (8 to 12 Hz), and beta (20 to 30 Hz) power between each alternate and standard configurations. RESULTS: After the removal of unanalyzable tracings, 7 patients were included for analysis in the infraorbital configuration and 9 in all other configurations. In the lateral upright and lateral inverse configurations, PSDs significantly differed from the standard configuration within the 15 to 20 Hz band. The greatest decrease in EEG power was in the lateral inverse configuration (median: -97 dB; IQR: -130, -62 dB). The largest change in frequency distribution of EEG power was in the infraorbital configuration; median SEF-95 change of -1.4 Hz (IQR: -2.8, 0.7 Hz), median relative delta power change of +7.3% (IQR: 1.4%, 7.9%), and median relative alpha power change of -0.6% (IQR: -5.7%, 0.0%). CONCLUSIONS: These 5 alternate Sedline electrode configurations are suitable options for monitoring frontal EEG when the standard configuration is not possible.

2.
Sci Rep ; 14(1): 4538, 2024 02 24.
Article En | MEDLINE | ID: mdl-38402253

The hippocampus and amygdala have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). Preclinical models suggest that stress-related changes in these regions can be reversed by antidepressants, including ketamine. Clinical studies have identified reduced volumes in MDD that are thought to be potentiated by early life stress and worsened by repeated depressive episodes. This study used 3T and 7T structural magnetic resonance imaging data to examine longitudinal changes in hippocampal and amygdalar subfield volumes associated with ketamine treatment. Data were drawn from a previous double-blind, placebo-controlled, crossover trial of healthy volunteers (HVs) unmedicated individuals with treatment-resistant depression (TRD) (3T: 18 HV, 26 TRD, 7T: 17 HV, 30 TRD) who were scanned at baseline and twice following either a 40 min IV ketamine (0.5 mg/kg) or saline infusion (acute: 1-2 days, interim: 9-10 days post infusion). No baseline differences were noted between the two groups. At 10 days post-infusion, a slight increase was observed between ketamine and placebo scans in whole left amygdalar volume in individuals with TRD. No other differences were found between individuals with TRD and HVs at either field strength. These findings shed light on the timing of ketamine's effects on cortical structures.


Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Ketamine , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/pathology , Healthy Volunteers , Hippocampus/pathology , Ketamine/pharmacology , Ketamine/therapeutic use , Treatment Outcome , Randomized Controlled Trials as Topic
3.
MethodsX ; 10: 102187, 2023.
Article En | MEDLINE | ID: mdl-37424756

Telemetric electroencephalography (EEG) recording, using subdermal needle electrodes, is a minimally-invasive method to investigate mammalian neurophysiology during anesthesia. These inexpensive systems may streamline experiments examining global brain phenomena during surgical anesthesia or disease. We utilized the OpenBCI™ Cyton board with subdermal needle electrodes to extract EEG features in six C57BL/6J mice undergoing isoflurane anesthesia. Burst suppression ratio (BSR) and spectral features were compared for a verification of our method. Following an increase from 1.5% to 2.0% isoflurane, the BSR increased (Wilcoxon-signed-rank statistic; p = 0.0313). Furthermore, although the absolute EEG spectral power decreased, the relative spectral power remained comparable (Wilcoxon-Mann-Whitney U-Statistic; 95% CI exclusive AUC=0.5; p < 0.05). Compared to tethered systems, this method confers several improvements for anesthesia specific protocols: 1-Avoiding electrode implant surgical procedures, 2-Anatomical non-specificity for needle electrode placement to monitor global cortical activity representative of anesthetic state, 3-Facility to repeat recordings in the same animal, 4-User-friendly for non-experts, 5-Rapid set-up time, and 6-Lower costs.•Minimally-invasive telemetric EEG recording systems ergonomically improve tethered systems for anesthesia protocols.•Using this method, we verified that higher isoflurane concentrations resulted in an increased EEG burst suppression ratio and decreased EEG absolute spectral power, with no change in frequency distribution.

...